Twisted Jacobi Intersections Curves
نویسندگان
چکیده
In this paper, the twisted Jacobi intersections which contains Jacobi intersections as a special case is introduced. We show that every elliptic curve over the prime field with three points of order 2 is isomorphic to a twisted Jacobi intersections curve. Some fast explicit formulae for twisted Jacobi intersections curves in projective coordinates are presented. These explicit formulae for addition and doubling are almost as fast as the Jacobi intersections. In addition, the scalar multiplication can be more effective in twisted Jacobi intersections than in Jacobi intersections. Moreover, we propose new addition formulae which are independent of parameters of curves and more effective in reality than the previous formulae in the literature.
منابع مشابه
Degenerate Curve Attacks - Extending Invalid Curve Attacks to Edwards Curves and Other Models
Invalid curve attacks are a well-known class of attacks against implementations of elliptic curve cryptosystems, in which an adversary tricks the cryptographic device into carrying out scalar multiplication not on the expected secure curve, but on some other, weaker elliptic curve of his choosing. In their original form, however, these attacks only affect elliptic curve implementations using ad...
متن کاملDivison Polynomials for Alternate Models of Elliptic Curves
In this paper we find division polynomials for Huff curves, Jacobi quartics, and Jacobi intersections. These curves are alternate models for elliptic curves to the more common Weierstrass curve. Division polynomials for Weierstrass curves are well known, and the division polynomials we find are analogues for these alternate models. Using the division polynomials, we show recursive formulas for ...
متن کاملEfficient Pairings Computation on Jacobi Quartic Elliptic Curves
This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 = dX +Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best resu...
متن کاملEfficient computation of pairings on Jacobi quartic elliptic curves
This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 D dX C Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best res...
متن کاملOptimizing Double-Base Elliptic-Curve Single-Scalar Multiplication
This paper analyzes the best speeds that can be obtained for single-scalar multiplication with variable base point by combining a huge range of options: – many choices of coordinate systems and formulas for individual group operations, including new formulas for tripling on Edwards curves; – double-base chains with many different doubling/tripling ratios, including standard base-2 chains as an ...
متن کامل